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Abstract
We revisit the nonequilibrium phase transition between a spatially homoge-
neous low-density phase and a phase-separated high-density state in the deter-
ministic sublattice totally asymmetric simple exclusion process with stochastic
defect. We discuss this phase transition in a grandcanonical ensemble for which
we obtain exact results for the stationary current-density correlations and for the
average collective velocity. We identify defect-induced anticorrelations that are
absent in similar boundary-induced phase transitions. The average collective
velocity vanishes at the phase transition and in the phase-separated state due to
its macroscopic spatial inhomogeneity.

Keywords: driven diffusive systems, molecular motors, totally asymmetric sim-
ple exclusion process with blockage, nonequilibrium steady state, current-
density correlations

1. Introduction

There is a large variety of molecular motors that move in a cell along a template or track
while performing some biological function. Examples include ribosomes moving along mRNA
template for protein synthesis, RNA polymerases moving along DNA, or kinesins and other
motor proteins moving along microtubules for cargo transport [1]. Exploring the mechanical
aspects of this motion from a biophysics perspective sheds light on common features of the
kinetics of such molecular motor ‘traffic’ [2] and on collective phenomena arising from the
interactions between motors performing their task simultaneously on the same track [3—8]. To
further highlight the significance of investigating molecular motor traffic we mention that from
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a medical viewpoint this research is important among other things for investigating the causes
of various diseases including Alzheimer’s (related to kinesin motors [9, 10]) or AIDS (related
to programmed frameshift of RNA polymerase)) [11-13], and for understanding changes in
antibiotic resistance [14, 15] due to synonymous mutation of the DNA sequence.

Two common features of molecular motor traffic are (i) translocation of the motors along
their track—which is a quasi one-dimensional step-wise driven motion from one binding
site to the next—and (ii) steric hindrance between motors due to excluded volume. These
properties lend themselves to theoretical analysis by one-dimensional asymmetric exclu-
sion processes (ASEPs) [16, 17] which are driven particle systems where translocation is
modelled by directed particle jumps along a one-dimensional lattice and steric hindrance
is taken into account by the exclusion principle that forbids occupancy of the same lattice
site by more than one particle, see [2, 7, 8] for extensive surveys and [18] for some recent
developments.

A further frequent feature is the appearance of inhomogeneities along the track that lead
to a significant slowing down of translocation at specific binding sites [19].! In the ASEP
approach such slow sites can be modelled by defects with a significantly reduced jump prob-
ability [25-30]. The interplay of directed translocation, steric hindrance and the presence of a
defect is known to lead to ‘molecular traffic jams’ [2] with strong impact on protein produc-
tion rates, efficiency of cargo transport or other cellular mechanisms associated with molecular
motors.

Localized defects in driven particle systems have a long history of study also from a statis-
tical physics perspective [31-37] and they continue to intrigue [38—42]. Generally, at a critical
motor density p, along the track there is a phase transition from a spatially homogeneous
free flow state for p < p, to a phase-separated congested state for p > p. where the stationary
particle current becomes independent of the conserved particle density. The phase-separated
state arises from the formation of a macroscopic ‘traffic jam’ behind the defect, consisting
of a congested high density domain and separated by a microscopically sharp domain wall
from the free-flow low-density domain [43—45]. Thus this phenomenon can be regarded as a
nonequilibrium analog of phase separation [46, 47]. The domain wall performs a diffusive ran-
dom motion with vanishing mean velocity at the critical point, see [48—53] for mathematically
rigorous results for exclusion processes.

Also the significance of correlations in active biological transport has been discussed using
the lattice gas approach [54—56]. In this work we study correlations between translocation at
some binding site and the presence of motors on some other—possibly far distant—binding
site. In particular, we discuss (i) the emergence of anticorrelations that have been discovered
recently also for the particle density [57, 58] and (ii) how the phase transition is reflected in the
velocity of kinematic density waves that arise as a collective phenomenon from local density
perturbations [17, 59-62].

The paper is organized as follows. In section 2 the lattice gas model is defined and known
stationary properties relevant for the present work are reviewed. In section 3 we derive and
discuss the exact stationary current-density correlation function and in section 4 the collective
motor velocity is obtained. In section 5 we present some conclusions. Technical details of the
mathematical computations are given in the appendices.

'In the context of the diseases mentioned above such ‘slow sites’ may arise from structural imperfections of the
microtubular structure [20], pseudoknots on mRNA templates [11, 21], or synonymous mutation of the DNA sequence
[22-24].
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2. The dsTASEP with a slow site

For self-containedness we recall the precise definition of the process and some of its basic
stationary properties which were proved in [33, 57, 58, 63] and used extensively in this work.

2.1. Definition

In the dsTASEP each binding location of a molecular motor on its track is represented by a site
k € {1,....L} of a one-dimensional lattice of L sites. We are not interested in effects due to
initiation and termination and therefore we take periodic boundary conditions which makes the
model exactly solvable. We ignore the size and mechanochemical cycle of the motor during a
translocation step so thata motor is represented by a particle without further internal degrees of
freedom. The steric hindrance between motors—which is tantamount to an excluded-volume
interaction—Tleads us to posit that each site can be occupied by one motor or be empty. Thus
we introduce local occupation numbers 7, € {0, 1} and the complementary ‘hole occupation
numbers’ 7j; == 1 — 7. The set of all possible locations of the motors (which is the set of all
possible states of the dsSTASEP) is denoted by n = (1, ..., 7.)-

The translocation of the motors is thus given by the time evolution of the occupation
numbers for which we choose a mathematically convenient discrete-time sublattice dynam-
ics as follows (figure 1). Each discrete time step ¢ € Ny corresponds to a mechanochemical
cycle of mean time 7 between consecutive translocations that depends on the molecular motor
under consideration. At even times = 2n, all particles located on odd sites 2k — 1 move for-
ward from 2k — 1 to 2k, provided that site 2k is empty. Then, at the following odd time step
t = 2n + 1, particles move in the same fashion from the even sites 2k to 2k + 1, except across
the defect bond (L, 1) where a particle on site L jumps randomly to site 1 with probability
0 < p < 1 provided site 1 is vacant?>. We mention that the qualitative stationary features of this
Markovian stochastic sublattice dynamics, for which the exact stationary distribution is known
[33, 63]. are the same as for similar parallel and sequential dynamics [64, 65].

With the binary independently and identically distributed random variables £(f) with distri-
bution f(-) = (1 — p)d.o + pd., the two-step stochastic time evolution is thus mathematically
defined by the discrete Langevin-type equations

q(t+1) = my
M1 (T+ 1) = mar 1 (D11 reven, 1<Kk< L @1
Nt +1) =1 — o1 (DN (1) 2

and
f1)=

Nax(t + 1) = nar(On2x4-1(1) } fodd, 1<k< L )
Mk1(t+ 1) = 1 — Nu(DNax1(0) 2
n(t+ 1) = nun) [1 — &+ D (0)] }

fodd. 2.2)

M+ 1) = (1) + @+ Dni(One(n)

Translation invariance of the dynamics is broken for p < 1. We take L/2 even and
0 < N < L/2 particles, corresponding to the density range p:=N/L < 1/2. Due to the

2 Notice a slight deviation from the convention of [57] where a full update cycle is defined to be one time step of
duration 7 with two sub-steps. The limiting cases p = 0 (full blockage) and p = 1 (no defect) are trivial [33] and
excluded from consideration.
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Figure 1. Update scheme of the dsTASEP on a lattice of L sites, illustrated near the slow
site L which is indicated by the symbol x between site L and site 1. The particle motion
at times f and 7 4 | is shown by arrows, starting with even 7. At the slow site the particle
jumps with probability p and stays with probability 1 — p. At time ¢ 4 2 the position of
the particle which is at site 6 at time 7 + | is determined by the unspecified occupancy
of site 7 at time 7 + 1 and therefore not indicated.

particle—hole symmetry 7 — 7.4+ for all k the properties of the model in the regime

p > 1/2 follow immediately.

Next we introduce the local currents

1 L
Ja—1(0) = EUZk—l(t)ﬁZk(t), 1 <k< 5 (2.3)
1 L
Ju(l) = 5[1 — N1 (DO = D1 ON2(D], 1 <k < 5~ 24
1
JL(0) = Ef(f)[l — N1 (ONLOI[1 — (O (D] (2.5)

For even ¢ the local current j,(7) takes value 1/2 if between time step ¢ + 2 and time step
t a particle has jumped across the lattice (k, k + 1) and O otherwise. Hence the quantity 2, €
{0, 1} indicates whether or not a jump has taken place locally in a full update cycle of two
consecutive time steps. A full update cycle of the dSTASEP can thus be expressed as the discrete

continuity equation

1
5 I+ 2) = m(D] = Jjier (1) = D)

forall k € T; and t even.

(2.6)

2.2. Stationary matrix product measure (MPM)

The invariant measure Py y(n) of the dSTASEP (2.1) and (2.2) with a fixed number N of par-
ticles—corresponding to a canonical ensemble—was first derived in [33] in terms of a set of
rules. There is a critical density p, = p/2 where a phase transition from a macroscopically
homogeneous phase for p < p, to a phase-separated state for p > p. occurs. Later a grand-

canonical invariant measure Py (1) Z]LV/:QOZN P; n(m) with fluctuating particle number with



